Blog

How a Low-Cost Brushed Motor Pump Achieves Brushless Motor Lifespan?

How a Low-Cost Brushed Motor Pump Achieves Brushless Motor Lifespan? I. Industry Background and Technical Challenges 1.1 Lifespan Difference Between Brushed and Brushless Motors In applications such as micro pumps, medical devices, small appliances, and industrial fluid control, motors serve as the core driving component. Their lifespan and performance stability directly determine the operational lifecycle and maintenance costs of the system. Conventionally, brushed motors typically last between 500 to 2,000 hours, while brushless motors can easily achieve 5,000 hours or more. This disparity has led to the widespread adoption of brushless motors in high-load, high-frequency applications. 1.2 The Cost Paradox: Performance vs. Affordability Despite the reliability and efficiency advantages of brushless motors, their high manufacturing cost (30-50% higher than brushed solutions) limits their deployment in  cost-sensitive scenarios. The industry faces a persistent dilemma: higher  performance  demands higher costs. 1.3 Hilin’s Technological Vision Hilin Technology is committed to breaking this deadlock through engineering innovation. We propose a high-performance, long-life brushed motor pump solution that significantly extends the lifespan of traditional brushed motors without substantially increasing costs, redefining their value in high-intensity applications. II. Core Technical Approaches 2.1 Power-Lifetime Coupling Modeling Objective: Establish a mathematical model to predict the lifespan trends of brushed motors under different operating conditions, enabling quantitative design. Methods & Achievements: 1)Developed a multi-physics simulation model integrating thermal, electrical, mechanical, and wear  processes. 2)Implemented neural network-based regression prediction to fit lifespan trends under multi-load and multi-voltage conditions. 3)Validated model accuracy (<8% error between experiments and simulations) for practical engineering applications. 2.2 High-Precision Dynamic Balancing Rotor System Objective: Reduce vibration-induced wear between brushes and commutators, improving operational stability. Key Measures: 1)Laser balancing + symmetrical structural design, achieving G1-grade dynamic balance (ISO 1940). 2)Vibration testing confirmed a 33% reduction in rotor oscillation amplitude. 3)Extended brush contact lifespan by mitigating brush bounce, arcing, and ablation failures. 2.3 Radial Runout Suppression Structure Objective: Optimize structural mechanics to minimize shaft deflection, ensuring stable and consistent brush-commutator contact. Key Designs: 1)High-rigidity bearings + flexible preload system, limiting radial runout to <15 μm. 2)Diaphragm suspension system with damping elements to absorb transient shocks and eccentric force fluctuations. 3) Added a third bearing, reducing rear bearing load by 40%. 4)Reduced unit wear rate through stable brush contact. 2.4 Brush Wear Accelerated Testing Platform Objective: Quantify brush lifespan via accelerated aging tests, enhancing development efficiency and prediction accuracy.…

Application case of micro vacuum pump driving sealed container for liquid collection

Application case of micro vacuum pump driving sealed container for liquid collection I. Background Introduction In chemical experiments in laboratories, wastewater discharge testing in chemical plants, or water quality monitoring at inspection stations, certain analytical experiments require sampling, collecting, or transferring liquid samples that are corrosive, reactive with equipment materials,…

Application of Miniature Vacuum Pumps in Closed-loop Gas Systems

Application of Miniature Vacuum Pumps in Closed-loop Gas Systems 1.Background Introduction In the electronics manufacturing industry, it is often necessary to test whether the gases produced by chemical substances attached to products under high-temperature and pressurized conditions are toxic or polluting, potentially harming human health. Products need to be placed…

Flue Gas Sampling Pumps: 10 Critical Considerations for High-Temperature Performance

The selection and use of high-temperature flue gas sampling pumps require comprehensive consideration of factors such as gas temperature, composition, corrosiveness, and particulate content. Below are the key features to consider during selection and operation: 1. High-Temperature Resistance Feature: Flue gas temperatures often exceed 100°C and can reach 500°C or higher, so…

Need Help?

I’m Here To Assist You

Something isn’t Clear?


Feel free to contact us for free consultation, and we will be more than happy to answer all of your questions within 24Hours.